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Existence of the Gravitomagnetic Interaction 
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The point of view expressed in the literature that gravitomagnetism has not yet 
been observed or measured is not entirely correct. Observations of gravitational 
phenomena are reviewed in which the gravitomagnetic interaction--a post- 
Newtonian gravitational force between moving matter--has participated and 
which has been measured to 1 part in 1000. Gravitomagnetism is shown to be 
ubiquitous in gravitational phenomena and is a necessary ingredient in the 
equations of motion, without which the most basic gravitational dynamical effects 
(including Newtonian gravity) could not be consistently calculated by different 
inertial observers. 

1. INTRODUCTION 

In the overview Physics Through the 1960s, the National Academy of 
Sciences (1986) review of opportunities for experimental tests of general 
relativity, they declare that "At present there is no experimental evidence 
arguing for or against the existence of the gravitomagnetic effects predicted 
by general relativity. This fundamental part of the theory remains untested." 
Similar points of view have been expressed elsewhere in promotion of 
various experiments designed to "see" gravitomagnetism. 

In this paper I make two points on this issue, which together lead to 
a position contrary to the viewpoint summarized by the above statement. 

1. The gravitomagnetic interaction is a consequence of the gravitational 
vector potential. This vector potential pays a crucial, unavoidable role in 
gravitation; without the gravitational vector potential the simplest gravita- 
tional phenomena-- the  Newtonian-order Keplerian orbit and the deflection 
of light by a central body- -cannot  be consistently calculated in two or more 
inertial frames of observation. Gravitation without the vector potential is 
an incomplete, ambiguous theory in the most fundamental sense. 
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2. There exists a variety of accurate observations of various post- 
Newtonian gravitational effects which together measure the gravitational 
vector potential and whose calculation unavoidably requires the participa- 
tion of the gravitational vector potential and the resulting gravitomagnetic 
forces. 

In summary, inertial frame "dragging"--both linear accelerative drag- 
ging and rotational "Lence-Thirring" dragging--are ubiquitous in gravita- 
tional phenomena already observed and measured. 

2. COMPLETENESS OF GRAVITATIONAL THEORY 

A dynamical theory of gravity, to be complete, must permit any inertial 
observer to calculate a given phenomenon and obtain a result consistent 
with the calculated result of another observer in a different inertial frame 
who analyzes the same phenomenon. 

For example, in the rest frame of the sun (or any other body) it is 
typically assumed that the static, spherically symmetric metric gravitational 
field is (in isotropic spatial coordinates) at linear order 

2 G M  
goo = 1 (la) r r 

o r ~  

goi = 0 (lc) 

for 0 = et, i , j  = x, y, z. The coefficient 3' equals 1 in general relativity. Light 
deflection is calculated from (la)-(lc) by employing the null-geodesic 
principle for a light ray, 

d~ "2 = g ~  dx ~ dx ~ = 0 (2) 

which yields the coordinate speed of light 

c( r )= c ~ [ 1 - ( 1 +  y ) ~ r  M ]  (3) 

and a lowest order deflection for a ray of light passing at distance D from 
the central body: 

Oo = f ~  O c ( r ) d t =  2(1 + 7)c GM-D (4) 
.} _~ O D 

Since the incident and final light rays are observed and measured far 
from the gravitational source, special relativistic kinematics (the Lorentz 



Existence of the Gravitomagnetic Interaction 1397 

transformation) can be used to obtain the deflection angle of the same light 
ray but observed by someone traveling at speed w in a direction opposite 
the incident light ray. The final photon 4-vector in the central body rest frame 

k ~ = k[1, cos 0o, - s in  0o, O] 

then transforms in the second inertial frame into 

k~'=k[ l+(w/c) c~176 c~176 ] 
(1 - w2/c2) 1/2 ' (1 - w2/c2) 1/2' -s in  0o, 0 

and the new deflection angle is directly read off: 

sin Ow = (1 - w2/c2) ~/2 sin 0o/[1 + (w/c) cos 00] 

To linear order in w and for small deflection angle Oo(D), this becomes 

Ow = Oo(1 - w / c )  (5) 

This same result, however, must also be calculable directly from the 
dynamics of gravitational theory by an observer who sees the central body 
moving to the right at speed w. Suppose this is attempted by one who denies 
the existence of a gravitational vector potential goi ~- h for the moving source 
and who again uses the metric field ( la)-( lc) .  The integral (4) now becomes 

Ow:I~_~o (l+y)GMDdt 00(1 +w)  (6) 

w h i c h  is inconsistent with (5). 
If a gravitational vector potential 

, GMw [GMw. I g~ +~ ~r  r./ (7) 

is added to the metric field for the moving source (o- is an arbitrary gauge 
coefficient) and the null geodesic principle (2) used to give the modified 
coordinate speed of light, 

c'(r) = e l 1 - ( l  + y)G~r  ] + h - c  

then agreement with the light deflection prediction (5) is reached. A Lorentz 
transformation applied to the static metric ( la)- ( lc)  obtains, of course, the 
vector potential (7) (up to the arbitrary gauge term) in the new inertial frame, 

f _ _  / x  goi -- Lo Li g~ 
0 0 i i =LoLi goo + LoLigii 

GM(w)i 
=2(1+3') c3 r 

to linear order in w. L~ is the Lorentz transformation matrix. 
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Similarly, consider the calculation of the shape of test body orbits 
around a central body at the Newtonian order. In the rest frame of the 
central body the Newtonian-order equation of motion is simply 

d2r GMr 
dt 2 - r 3 

with resulting Keplerian ellipses for orbits. The test body equation of motion 
is obtained from the geodesic principle, which for a single particle is 
equivalent to an effective Lagrangian 

dx- ax~ 
L = -  g~( r ,  t)--~- dt .J (8) 

I f  one now attempts to calculate the test body orbits as viewed from 
an inertial frame which moves at velocity w relative to the central mass and 
neglects the presence of vector potential by using the gravitational metric 
field ( l a ) - ( l c )  the equation of motion to linear order in w becomes 

d2p GMp GM 
dt 2 p3 +c2p3( 2 w ' -  Vp+W" pv) 

GM 
+2(1 + y ) ~ ( p  �9 v w - w .  up) (9) 

c-p- 

in which p = r - w t  and l, = dp/dt.  
Solution of (9) yields an initial circular orbit which blows' itself apart  

(at least until some higher order terms in the equation of motion stop the 
runaway), 

siTt ) p(t)  = v o - ( l +  t cos t o t -  (lO) 

to is the circular orbital frequency. The rate of  runaway in (10) depends 
linearly on the observer's relative motion w. 

Nonsense! Such an orbit is clearly not a Keplerian ellipse transported 
at constant velocity w. However, if the gravitational vector potential (7) is 
added to the static gravitational metric field ( l a ) - ( l c ) ,  it eliminates the 
driving term in (9) responsible for this orbit runaway, leaving a Lorentz- 
boosted Kepler  orbit as the solution to the equations of motion. 

The gravitational vector potential (7) is therefore required for a moving 
mass source whenever ( l a ) - ( l c )  is the linear gravitational metric field for 
a mass at rest; otherwise, the most elementary gravitational effects cannot 
consistently be calculated from the general inertial frame of reference. 
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3. THE NECESSARY GRAVITATIONAL VECTOR POTENTIAL 

Will and Nordtvedt (1972) give the necessary structure of the gravita- 
tional metric field, and to linear order it is 

mi miv~ ~ m i /  w" ri~ a 
goo-- 1 - 2  Y, ~ -  (2~+ 1) 2 - T - +  a~2. T / ~ )  

i ri i C ri i r i \  r / 

m , / w \  2 y mi w-v, ( l l a )  
+ ( a l -  c%) 2 . - - ~ - 1  

+ ~ 7  r, c 2 r~ \ c /  

lr l  k 

go, ~ h = ( 2 y + 2 + 2 )  ~ m--2~ ~ + 2 ~  m-i w- 
r i c r i c 

mass parameters in gravitational units, me ̀ = GM,./c 2. The g.~ mi are 
necessarily includes the vector potential (11 c) unless a~ = a 2 = 0 (no prefer- 
red inertial frames in gravitational physics) and 7 = -1 (pure scalar gravity). 
Nature has chosen y ~ 1, however. The metric field components (1 la)-(1 lc) 
depend on a choice of coordinates (gauge), and conservation laws for 
energy~ momentum, and angular momentum are assumed, but these condi- 
tions do not affect the discussion here. w is the observer's inertial frame 
velocity relative to a "preferred" inertial frame. For cq = a 2 =- 0 the general 
metric field form is the same in all inertial frames, and there are no 
"preferred" inertial frame physical effects dependent on w. Note that in tl~e 
general case a source with vi -- -w  Ca source at rest in the "preferred" inertial 
frame but being observed from a moving frame) generates a vector potential 
h of the form (7), which we found was necessary to make the calculation 
of  basic gravitational effects consistent. It should be emphasized that the 
metric field form given by ( l l a ) - ( l l c )  results from that condition that we 
must have a consistent and complete gravitational theory in which observers 
in any inertial frame may analyze the same physical system and obtain 
intercomparable, consistent predictions. 

Equation ( l l c )  yields a magnetic momentqike vector potential for a 
spinning mass source 

a 1 \ G J •  (I2) 
h~-~- 1 q- 'y "0r --~-) 7 r 3 

J is the angular momentum of  the spinning source. This potential creates 
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the so-called gravitomagnetic effects sought in various experiments. But we 
already know much about the coefficients 3' and al which calibrate this 
vector potential. 3' is known to be 1 to within 1 part in 1000 by the latest 
radar time-of-flight experiments to Mars planetary landers (Hellings, 1984). 
oq has been constrained by many experiments, but the most recent and 
tightest bound has been made by using binary pulsar system PSR 1913 + 16 
observational data, which include excellent agreement between general 
relativity's prediction of gravitational radiation reaction effects and the 
measured orbital period secular rate of change; this agreement requires al  
to be less than 10 -6 (Nordtvedt, 1987). A more modest constraint on al 
can be made using only solar system observations, in which al is constrained 
to be less than 10 -a (Hellings, 1984). 

4. ROLE OF THE GRAVITATIONAL VECTOR POTENTIAL 
IN PHYSICAL EFFECTS 

As has been discussed, the gravitational vector potential is needed to 
properly calculate any physical effect in gravity, unless one happens to pick 
a special inertial frame in which all sources are static. This should remind 
us that it is not particularly fruitful to focus on a particular component of 
a physical tensor, such as g~ .  Components mix among themselves as one 
transforms from one asymptotic inertial frame to another, and some tensor 
components can be made zero by choosing special coordinate systems. The 
invariant aspects (or physical degrees of freedom) of the metric field g ~  
are labeled by the PPN coefficients, % /3, ~, a l ,  a2, etc., which appear in 
the several components of the physical tensor (Will and Nordtvedt, 1972). 

It may be worthwhile at this point to review several calculations of 
physical effects in gravity which have been subject to measurement, and in 
which the gravitational vector potential has played a crucial, unavoidable 
role because these effects could be viewed from no inertial frame in which 
all the sources of gravity in the problem were static. From the geodesic-based 
Lagrangian for individual particles (8) it is straightforward to obtain the 
contribution of the vector potential to the equation of motion. The result 
is, in linear order, 

[oh v•215 (13) ~a = e t _ ~ -  

As will be shown later, the second acceleration term can be viewed as the 
"Coriolis" acceleration 2v x 11 in an inertial frame being rotationally drag- 
ged, and the first term can be interpreted as an accelerative dragging of 
inertial space. Now (13) is applied to several observations. 
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A. Suppose one is in the instantaneous rest frame of a celestial body 
which is being accelerated by an external body. The inductive acceleration 
term Oh/Ot then makes a significant contribution to the inertial reaction of 
the body which experiences the external acceleration. From (11 c), assuming 
the body as a whole accelerates at rate a, (13) makes an inertial mass 
contribution 

( Ol)  
~,Mi6ai = 2T+2+-~-  ~5~ ro \----~]--~TY~--'--T-rijro.a (14) 
i ij rq  

the sum over i,j is over the mass elements of the body. Applied to the earth, 
(14) makes a contribution to our planet's inertial mass at the level of 
3.5 • 10 -9 of the total mass of the earth (Nordtvedt, 1968, 1982). The lunar 
laser ranging observations, however, have constrained the gravitational-to- 
inertial mass ratio of the earth to be 1 to a part in 1012 (C. O. Alley, personal 
communication; Williams et al., 1976). The very large contribution to inertial 
mass due to the gravitational vector potential (14) is needed to reach 
agreement with observation. 

B. In the center-of-energy rest frame of the binary pulsar system PSR 
1913 + 16 both bodies, the pulsar and its companion, are in motion because 
of comparable masses for the two bodies. So even in this special frame of 
reference the vector potential produced by each body contributes to the 
motion of the other body. Equation (13) produces a total term to the relative 
acceleration between the bodies, 

~at2 = _ (2,y A_ 2A_~!) C2~11 ~"M2)~ [/)GM1Mer[ 2_[ 2G(M~ + M2)] 

+ \(1 + a2~2 ] c2(M,GM'M2+ M2) ~ 3 [2w " r+  vzr -  3(v " r)2r] (15) 

In the absence of (15) there would be an additional (anomalous) precession 
of periastron of the orbit in amount (per revolution) 

GM1 Mz 1 
60 = 157r 

c2(M1 + M2)ao 1 - e 2 

ao is the orbit semimajor axis and e is the orbital eccentricity. The above 
precession amounts to 10.5 arc-deg/year for the binary pulsar; the observed 
total precession of periastron is 4.2+0.01 arc-deg/year (Weisberg and 
Taylor, 1984). It should then be asked: What is so different between the 
gravitomagnetic force acting between two bodies traveling in orbits around 
their common center of energy, and the gravitomagnetic force predicted to 
exist between two separated spinning masses and for which it is declared 
that there is no evidence? 
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5. DRAGGING OF INERTIAL FRAMES AND MACH'S IDEAS 

What seems to have especially caught the interest of physicists in 
searching for the spin-spin interaction in gravity is that this would seem to 
be a manifestation of ideas of Mach, who a century ago believed that inertia 
was caused, in some sense, by the universe's matter distribution. Lense and 
Thirring later showed that, indeed, in general relativity rotating matter 
would drag the inertial frame around at a slow rate which fell off with 
distance from the rotating matter, 

_ G f J - 3 J ' ~ )  
l'~ -- C3 \ r3 (16) 

J is the angular momentum of the spinning body and r is the distance to 
the point of space in question, l}(r) is the rotation rate and rotation axis 
for the inertial space at that point of space which is induced by the spinning 
source. Equation (16) follows from (12) with choice of PPN coefficients 
appropriate to general relativity, and the identification 

c 
~ =  - - V x h  

2 

Looking at the general case, one can ask what is the complete effect 
of the gravitational vector potential in dragging inertial frames? This ques- 
tion can be addressed by calculating the contribution of h in establishing 
the geodesic coordinate frames (inertial frames). The general formula 

E x , - x ~ o ~ ] , : [ x  ~ ~ , ~ o - x ( 0 ) ] + ~ F ~ [ x  -x~0)][x 13 -X~o)] (17) 

in which F ~  are the Christottel symbols produced from first derivatives of 
the gravitational metric field, gives the transformation from original space- 
time coordinates x r to inertial (geodesic) coordinates x ~' in the vicinity of 
any chosen space-time point xr(0).  Examining solely the vector potential 
(goi) contribution to (17) yields 

[ r -  r(o~]' = [ r -  r(o)]- c [~ 0h 

The gravitational vector potential produces in this general case a "dragging" 
of inertial space at each locality with both an acceleration of the inertial 
frame at rate 

a(r, t )  = - c  Oh/Ot  (19a) 

and a rotation of the inertial frame at angular rate and axis 

l-}(r, t) = -�89 x h (19b) 
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If we return to the problem of light deflection by ~ body moving at 
speed w and employ the vector potential given by (7), wef ind  that (19a) 
gives no contribution to the light ray deflection; however, (19b) produces 
a rotational dragging of inertial frames at a rate 

G M D w  1 

c 2 i r _ w t i  3 

and in a counterclockwise sense. The time integral of this rotation rate over 
the entire trajectory of the light ray produces the total deflection or rotation 
angle 

2w 
6 0  = - - -  Oo 

c 

which is what is needed to obtain agreement with (5) as discussed in 
Section 2. 

The periastron precession of the binary pulsar orbit discussed pre- 
viously received contributions of  inertial frame dragging from both (19a) 
and (19b). The situation can be viewed this way; part of the motion of the 
two bodies in the binary pulsar results from the "Coriolis" acceleration 
that each body experiences because the motion of the other body is produc- 
ing rotational dragging of the inertial frame at the locality of each body in 
question. 

Finally, the accelerated celestial body mentioned previously drags the 
inertial frames through (19a), with the resulting acceleration of inertial 
space being 

~a(r, t) = - ( 2 q - 2 7 + ~ ) ~ a  

in which U(r) is the Newtonian potential function of  that body's mass 
distribution and a is the body's acceleration. 

6. CONCLUSION 

The gravitomagnetic interaction--the post-Newtonian gravitational 
interaction between moving masses--has been observed and measured in 
a number of different phenomena. The strength of this interaction is now 
known to an accuracy of 1 part in 1000. The gravitomagnetic interaction is 
also required in order to have a complete and consistent theory of gravity 
at all: even static source gravitational effects when viewed in another inertial 
frame require the gravitomagnetic interaction in order for basic consistency 
of  a theory's equations of  motion. Just as in electromagnetic theory, there 
is no absolute separation of "electric" and "magnetic" effects; such a 
division is inertial frame dependent. 
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I believe there are many excellent reasons to develop experiments to 
see additional gravitomagnetic effects, or, for that matter, to see any other 
new post-Newtonian gravitational effects, even though all PPN metric 
coefficients at the first post-Newtonian level have been measured to accuracy 
of 10 -3 or better. Redundant  measurements of  post-Newtonian gravity test 
the very consistency of the idea that there is a unique PPN metric gravita- 
tional field which is sufficient to calculate the outcome of any first post- 
Newtonian gravitational effect. Failure to confirm this when observing new 
phenomena would require a revolutionary, not minor, change in our theo- 
retical foundations of  gravitation. 

But the point of  view expressed by the National Academy o f  Science 
statement quoted earlier in this paper  and repeated throughout the literature 
is erroneous; there clearly is much experimental evidence for the gravitomag- 
netic interaction. 

R E F E R E N C E S  

Hellings, R. (1984). Proceedings of the lOth International Conference in General Relativity and 
Gravitation. 

National Academy of Sciences (1986). Physics Through the 1960s, National Academy Press, 
Washington, DC. 

Nordtvedt, K. (1968). Physical Review, 169, 1017. 
Nordtvedt, K. (1982). Reports on Progress in Physics, 45, 631. 
Nordtvedt, K. (1987). Astrophysical Journal, 322. 
Weisberg, J. M., and Taylor, J. H. (1984). Physical Review Letters, 52, 757. 
Will, C., and Nordtvedt, K. (1972). Astrophysical Journal, 177, 757. 
Williams, J., et al. (1976). Physical Review Letters, 36, 551. 


